Topics in the June 2007 Exam Paper for CHEM1101

Click on the links for resources on each topic.

2007-J-2:

• Nuclear and Radiation Chemistry

2007-J-3:

- Wave Theory of Electrons and Resulting Atomic Energy Levels
- Filling Energy Levels in Atoms Larger than Hydrogen

2007-J-4:

- Lewis Structures
- VSEPR

2007-J-5:

2007-J-6:

- Thermochemistry
- First and Second Law of Thermodynamics

2007-J-7:

- Thermochemistry
- First and Second Law of Thermodynamics

2007-J-8:

- First and Second Law of Thermodynamics
- Chemical Equilibrium
- Types of Intermolecular Forces

2007-J-9:

- Gas Laws
- Chemical Equilibrium

2007-J-10:

Chemical Equilibrium

2007-J-11:

• Electrochemistry

2007-J-12:

• Electrolytic Cells

The University of Sydney 22/05(a)

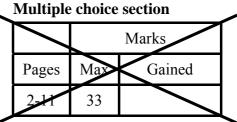
CHEMISTRY 1A - CHEM1101

CONFIDENTIAL

FIRST SEMESTER EXAMINATION

JUNE 2007

TIME ALLOWED: THREE HOURS


GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

FAMILY NAME	SID NUMBER	
OTHER NAMES	TABLE NUMBER	

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 21 pages of examinable material.
- Complete the written section of the examination paper in INK.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100. The possible score per page is shown in the adjacent tables.
- Each new short answer question begins with a •.
- Electronic calculators, including programmable calculators, may be used. Students are warned, however, that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- Numerical values required for any question, standard electrode reduction potentials, a Periodic Table and some useful formulas may be found on the separate data sheets.
- Pages 15 and 24 are for rough working only.

OFFICIAL USE ONLY

Short answer section

	Marks			
Page	Max	Gaine	d	Marker
12	8			
13	10			
14	9			
16	4			
17	5			
18	3			
19	5			
20	5			
21	6			
22	5			
23	7			
Total	67			
Check	total			

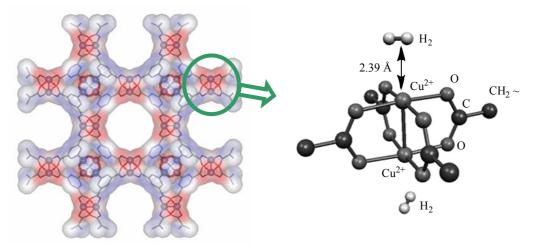
Marks • Balance the following nuclear reactions by identifying the missing nuclear particle or 3 nuclide. $_{26}^{55}$ Fe + $_{-1}^{0}$ e \rightarrow ${}_{2}^{3}\text{He} + {}_{2}^{3}\text{He} \rightarrow 2 {}_{1}^{1}\text{p} +$ $^{15}_{7}N$ + $^{1}_{1}p$ \rightarrow $^{15}_{8}O$ + 2 • Calculate the atomic mass of lead from the isotope information provided. Isotope Mass of isotope (a.m.u.) Relative abundance ²⁰⁴Pb 203.97304 1.40% ²⁰⁶Pb 205.97446 24.10% ²⁰⁷Pb 206.97589 22.10% ²⁰⁸Pb 207.97664 52.40% Answer: • Calculate the molar activity of ¹¹C (in curie), given its half-life of 20.3 minutes. 3 Answer:

	a brief explanation of each of the n or a diagram where appropriate)	following terms. (You may include an
(a) Pauli ex	clusion principle	
(b) the Boł	nr model of the atom	
	own the ground state electron contration of lithium is given as an exa	figurations for the following elements. The ample.
Li	$1s^2 2s^1$	
Ne		
Br		
	the following wave functions as loss and nuclear positions.	be representations. Clearly mark all nodal
(a) a 2 <i>p</i> orl	pital	(b) a π molecular orbital

Name	Lewis structure	Number of	Geometric	Molecular	_ (
Tunie	Lewis structure	valence electron pairs on central atom	arrangement of valence electron pairs on central atom	shape	
water	н-ё-н	4	tetrahedral	bent	
sulfur hexafluoride					
iodine trichloride					
xenon tetrafluoride					
	rface (skin) temperature of at which the most intense.				3
		A			_
Calavlata th		Answer:			_
	e energy of a single photo				_

Marks • A cartoon representation of the structure of *halite* (NaCl) is shown below. The 4 structure arises from the closest possible packing of anions stabilized by cations in the interstices. From a density of 2.16 g cm⁻³, a nearest neighbour distance of 282 pm was calculated. Crystal structure Madelung constant (A) ZnS (wurtzite) 1.641 NaCl 1.748 CsCl 1.763 NaCl: $\bigcirc = Na^+, \bigcirc = Cl^-$ What is the molar lattice energy of *halite*? Answer: What would be the Madelung constant of lithium chloride given that it does not adopt the wurtzite structure? Explain your answer.

CHEM1101	2007-J- 6	June 2007	22/05(a)
• The current "petro which octane is a t	•	n the combustion of fossil fuels, of	Marks 5
2	$C_8H_{18}(l) + 25O_2(g) \rightarrow 16C0$	$D_2(g) + 18H_2O(l)$	
Calculate the heat	of combustion of octane using	the supplied heat of formation data.	
Data: C ₈ H ₁₈ (1): -2	249.9 kJ mol ⁻¹ ; CO ₂ (g): -393	.5 kJ mol ⁻¹ ; H ₂ O(l): -285.8 kJ mol ⁻	-1
	Answ	er:	
	is released when 1.00 L of octoctane is 0.67 kg L^{-1}	tane is burned?	
	<u> </u>		
	Answ	er:	


THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY

• The so-called "hydrogen economy" is bas energy. The gas is then burned as fuel:	eed on $H_2(g)$ produced from water by solar	Marks 3
$2H_2(g) + O_2(g) \rightarrow 2H_2O(1)$) $\Delta H_{\rm r} = -571.6 \text{ kJ mol}^{-1}$	
Calculate the volume of H_2 gas at 25 °C a of heat.	nd 1 atm required to produce $1.0 \times 10^4 \text{ kJ}$	
	Answer:	

THIS QUESTION CONTINUES ON THE NEXT PAGE. THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY

Marks 5

A major disadvantage of hydrogen as a fuel is that it is a gas, and therefore hard to store. There is an enormous world-wide effort, including research performed in the University of Sydney, to develop novel chemical structures in which H_2 can be stored much more efficiently. One of the structures being tested in the School of Chemistry is shown below.

What type of intermolecular force (or forces) are responsible for the binding between the Cu^{2+} and the H_2 ?

In order that such a material be useful for fuel storage, the binding of the H₂ must be reversible:

 $cage(s) + H_2(g) \iff cage H_2(s)$

One simple way to reverse the binding is to increase the temperature, so that at low temperature the equilibrium lies to the right and at high temperature to the left. Use this information, plus any chemical knowledge or intuition to infer the sign of ΔG , ΔH and ΔS at "low" and "high" temperatures. (You may assume that ΔH and ΔS do not change greatly with temperature.)

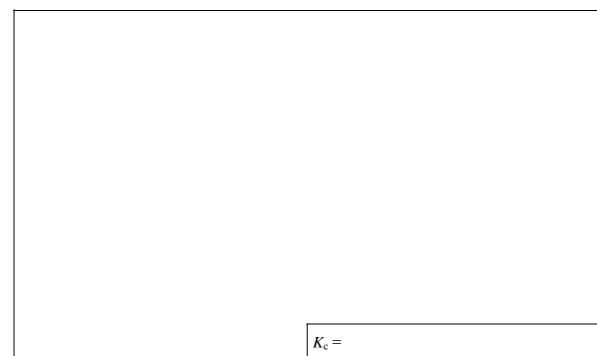
Marks • $N_2(g)$ and $O_2(g)$ react with each other to a small extent if a catalyst is present to form 5 nitric oxide, NO(g), according to the following equation. $N_2(g) + O_2(g) \rightleftharpoons 2NO(g)$ The equilibrium constant, K_p , for this reaction is 4.35×10^{-35} at 298 K and 2.75×10^{-20} at 500 K. Is the reaction exothermic or endothermic? Give reasons for your answer. The partial pressures of $O_2(g)$ and $N_2(g)$ in air are 0.210 atm and 0.780 atm respectively. If air at atmospheric pressure is sealed in a 1.00 L container containing the catalyst at 298 K, what will be the partial pressure of NO(g) and the total pressure inside the container at equilibrium? Pressure of NO(g): Total pressure:

THIS QUESTION CONTINUES ON THE NEXT PAGE.

Marks

6

Oxidation of NO(g) to produce the pollutant $NO_2(g)$ is favoured at higher temperatures, such as those in a car exhaust:


$$2NO(g) + O_2(g) \iff 2NO_2(g)$$

The equilibrium constant, K_p , for this reaction is 1.3×10^4 at 500 K. What is the value of K_c at 500 K?

 $K_{\rm c} =$

Using this value and the equilibrium constant for the formation of NO(g) from the previous page, calculate the value of K_c for the formation of NO₂(g) from N₂(g) and O₂(g) at 500 K according to the following equation.

$$N_2(g) + 2O_2(g) \implies 2NO_2(g)$$

• Give balanced ionic equations for the reactions that occur in each of the following cases.	3
Potassium metal is added to excess water.	
	_
Solutions of zinc nitrate and sodium phosphate are mixed.	
Solid strontium carbonate is dissolved in dilute nitric acid.	_
• Explain why the voltage of the lead acid battery ($E^\circ = 2.05 \text{ V}$) decreases when it discharges, whereas the zinc/silver button battery ($E^\circ = 1.6 \text{ V}$) does not.	2
$Pb(s), PbSO_{4}(s) H^{+}(aq), HSO_{4}^{-}(aq) H^{+}(aq), HSO_{4}^{-}(aq) PbO_{2}(s), PbSO_{4}(s)$	
$Zn(s), ZnO(s) OH^{-}(aq) OH^{-}(aq) Ag_2O(s), Ag(s)$	

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY

If 1.00 tonne (10³ kg) of aluminium metal is produced by the electrolysis of molten Al₂O₃, how many tonnes of carbon dioxide are emitted by oxidation of the carbon electrodes?
Answer:
The electrolysis of aqueous sodium chloride produces H₂(g) and Cl₂(g). Circle the choice that correctly finishes each of the following statements about this process.

enotee that correctly ministics each of the following statements about this process.				
The Cl ₂ (g) is produced at the	anode	cathode		
In the aqueous salt solution, the sodium ions migrate towards the electrode that produces	Cl ₂ (g)	H ₂ (g)		
As the electrolysis proceeds the pH of the aqueous salt solution	increases	decreases		
If the process were being run with a battery, the positive electrode of the battery would be connected to the electrode that produces	Cl ₂ (g)	$H_2(g)$		

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY

CHEM1101 - CHEMISTRY 1A

DATA SHEET

 $Physical \ constants$ Avogadro constant, $N_{\rm A} = 6.022 \times 10^{23} \ {\rm mol}^{-1}$ Faraday constant, $F = 96485 \ {\rm C} \ {\rm mol}^{-1}$ Planck constant, $h = 6.626 \times 10^{-34} \ {\rm J} \ {\rm s}$ Speed of light in vacuum, $c = 2.998 \times 10^8 \ {\rm m \ s}^{-1}$ Rydberg constant, $E_{\rm R} = 2.18 \times 10^{-18} \ {\rm J}$ Boltzmann constant, $k_{\rm B} = 1.381 \times 10^{-23} \ {\rm J \ K}^{-1}$ Permittivity of a vacuum, $\varepsilon_0 = 8.854 \times 10^{-12} \ {\rm C}^2 \ {\rm J}^{-1} \ {\rm m}^{-1}$ Gas constant, $R = 8.314 \ {\rm J \ K}^{-1} \ {\rm mol}^{-1}$ $= 0.08206 \ {\rm L} \ {\rm atm \ K}^{-1} \ {\rm mol}^{-1}$ Charge of electron, $e = 1.602 \times 10^{-19} \ {\rm C}$ Mass of proton, $m_{\rm p} = 1.6726 \times 10^{-27} \ {\rm kg}$ Mass of neutron, $m_{\rm n} = 1.6749 \times 10^{-27} \ {\rm kg}$

Properties of matter

Volume of 1 mole of ideal gas at 1 atm and 25 °C = 24.5 L Volume of 1 mole of ideal gas at 1 atm and 0 °C = 22.4 L Density of water at 298 K = 0.997 g cm⁻³

Conversion factors	
1 atm = 760 mmHg = 101.3 kPa	$1 \text{ Ci} = 3.70 \times 10^{10} \text{ Bq}$
0 °C = 273 K	$1 \text{ Hz} = 1 \text{ s}^{-1}$
$1 L = 10^{-3} m^3$	$1 \text{ tonne} = 10^3 \text{ kg}$
$1 \text{ Å} = 10^{-10} \text{ m}$	$1 \text{ W} = 1 \text{ J s}^{-1}$
$1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$	

Decimal fractions		Dec	Decimal multiples		
Fraction	Prefix	Symbol	Multiple	Prefix	Symbol
10^{-3}	milli	m	10^{3}	kilo	k
10^{-6}	micro	μ	10^{6}	mega	Μ
10^{-9}	nano	n	10 ⁹	giga	G
10^{-12}	pico	р			

CHEM1101 - CHEMISTRY 1A

Standard Reduction Potentials, E°	
Reaction	E° / V
$\mathrm{Co}^{3+}(\mathrm{aq}) + \mathrm{e}^{-} \rightarrow \mathrm{Co}^{2+}(\mathrm{aq})$	+1.82
$\operatorname{Ce}^{4+}(\operatorname{aq}) + \operatorname{e}^{-} \rightarrow \operatorname{Ce}^{3+}(\operatorname{aq})$	+1.72
$MnO_4^{-}(aq) + 8H^{+}(aq) + 5e^{-} \rightarrow Mn^{2+}(aq) + 4H_2O$	+1.51
$\operatorname{Au}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Au}(s)$	+1.50
$Cl_2 + 2e^- \rightarrow 2Cl^-(aq)$	+1.36
$O_2 + 4H^+(aq) + 4e^- \rightarrow 2H_2O$	+1.23
$Pt^{2+}(aq) + 2e^{-} \rightarrow Pt(s)$	+1.18
$MnO_2(s) + 4H^+(aq) + e^- \rightarrow Mn^{3+} + 2H_2O$	+0.96
$Pd^{2+}(aq) + 2e^{-} \rightarrow Pd(s)$	+0.92
$Ag^+(aq) + e^- \rightarrow Ag(s)$	+0.80
$\operatorname{Fe}^{3+}(\operatorname{aq}) + e^{-} \rightarrow \operatorname{Fe}^{2+}(\operatorname{aq})$	+0.77
$Cu^+(aq) + e^- \rightarrow Cu(s)$	+0.53
$Cu^{2+}(aq) + 2e^- \rightarrow Cu(s)$	+0.34
$\operatorname{Sn}^{4+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}^{2+}(\operatorname{aq})$	+0.15
$2\mathrm{H}^{+}(\mathrm{aq}) + 2\mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{g})$	0 (by definition)
$Fe^{3+}(aq) + 3e^- \rightarrow Fe(s)$	-0.04
$Pb^{2+}(aq) + 2e^- \rightarrow Pb(s)$	-0.13
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}(s)$	-0.14
$Ni^{2+}(aq) + 2e^- \rightarrow Ni(s)$	-0.24
$Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$	-0.40
$Fe^{2+}(aq) + 2e^- \rightarrow Fe(s)$	-0.44
$\operatorname{Cr}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Cr}(s)$	-0.74
$\operatorname{Zn}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Zn}(s)$	-0.76
$2H_2O + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$	-0.83
$\operatorname{Cr}^{2^+}(\operatorname{aq}) + 2e^- \rightarrow \operatorname{Cr}(s)$	-0.89
$Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$	-1.68
$Mg^{2+}(aq) + 2e^{-} \rightarrow Mg(s)$	-2.36
$Na^+(aq) + e^- \rightarrow Na(s)$	-2.71
$Ca^{2+}(aq) + 2e^{-} \rightarrow Ca(s)$	-2.87
$\text{Li}^+(\text{aq}) + e^- \rightarrow \text{Li}(s)$	-3.04

CHEM1101 - CHEMISTRY 1A

Useful formulas

Quantum Chemistry	Electrochemistry
$E = h\nu = hc/\lambda$	$\Delta G^{\circ} = -nFE^{\circ}$
$\lambda = h/mv$	Moles of $e^- = It/F$
$4.5k_{\rm B}T = hc/\lambda$	$E = E^{\circ} - (RT/nF) \times 2.303 \log Q$
$E = -Z^2 E_{\rm R}(1/n^2)$	$= E^{\circ} - (RT/nF) \times \ln Q$
$\Delta x \cdot \Delta(mv) \ge h/4\pi$	$E^{\circ} = (RT/nF) \times 2.303 \log K$
$q = 4\pi r^2 \times 5.67 \times 10^{-8} \times T^4$	$= (RT/nF) \times \ln K$
	$E = E^{\circ} - \frac{0.0592}{n} \log Q \text{ (at 25 °C)}$
Acids and Bases	Gas Laws
$pK_{\rm w} = pH + pOH = 14.00$	PV = nRT
$\mathbf{p}K_{\mathrm{w}} = \mathbf{p}K_{\mathrm{a}} + \mathbf{p}K_{\mathrm{b}} = 14.00$	$(P + n^2 a/V^2)(V - nb) = nRT$
$pH = pK_a + \log\{[A^-] / [HA]\}$	
Colligative properties	Kinetics
$\pi = cRT$	$t_{l/2} = \ln 2/k$
$P_{\text{solution}} = X_{\text{solvent}} \times P^{\circ}_{\text{solvent}}$	$k = A e^{-Ea/RT}$
$\mathbf{p} = k\mathbf{c}$	$\ln[\mathbf{A}] = \ln[\mathbf{A}]_{\rm o} - kt$
$\Delta T_{\rm f} = K_{\rm f} m$	$\ln\frac{k_2}{k} = \frac{E_a}{P}\left(\frac{1}{T} - \frac{1}{T}\right)$
$\Delta T_{\rm b} = K_{\rm b} m$	$k_1 R T_1 T_2$
Radioactivity	Thermodynamics & Equilibrium
$t_{\frac{1}{2}} = \ln 2/\lambda$	$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$
$A = \lambda N$	$\Delta G = \Delta G^{\circ} + RT \ln Q$
$\ln(N_0/N_t) = \lambda t$	$\Delta G^{\circ} = -RT \ln K$
14 C age = 8033 ln(A_0/A_t) years	$K_{\rm p} = K_{\rm c} \left(RT \right)^{\Delta n}$
Miscellaneous	Mathematics
$A = -\log 10 \frac{I}{I_0}$	If $ax^2 + bx + c = 0$, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
$A = \varepsilon c l$	$\ln x = 2.303 \log x$
$E = -A \frac{e^2}{4\pi\varepsilon_0 r} N_{\rm A}$	

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1 нудгоден Н 1.008		_															2 нелим Не 4.003
3	4											5	6	7	8	9	10
LITHIUM	BERYLLIUM Be											BORON B	CARBON C	NITROGEN N	OXYGEN O	FLUORINE F	NEON Ne
6.941	9.012											10.81	12.01	14.01	16.00	19.00	20.18
11	12											13	14	15	16	17	18
sodium Na	MAGNESIUM Mg											ALUMINIUM	SILICON Si	PHOSPHORUS P	SULFUR S	CHLORINE Cl	ARGON Ar
22.99	24.31											26.98	28.09	30.97	32.07	35.45	39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
potassium K	CALCIUM Ca	scandium Sc	TITANIUM Ti	VANADIUM V	CHROMIUM Cr	MANGANESE Mn	Fe	COBALT	NICKEL Ni	COPPER Cu	ZINC Zn	GALLIUM Ga	GERMANIUM Ge	ARSENIC AS	selenium Se	BROMINE Br	KRYPTON Kr
3 9.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.59	74.92	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
RUBIDIUM Rb	strontium Sr	YTTRIUM Y	zirconium Zr	NIOBIUM Nb	MOLYBDENUM MO	TECHNETIUM TC	RUTHENIUM Ru	RHODIUM Rh	PALLADIUM Pd	SILVER	CADMIUM Cd	INDIUM	Sn	ANTIMONY Sb	TELLURIUM Te	IODINE	xenon Xe
КО 85.47	87.62	∎ 88.91	91.22	92.91	95.94	[98.91]	101.07	102.91	106.4	Ag 107.87	112.40	114.82	511 118.69	SD 121.75	127.60	∎ 126.90	131.30
55	56	57-71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
CAESIUM	BARIUM		HAFNIUM	TANTALUM	TUNGSTEN	RHENIUM	OSMIUM	IRIDIUM	PLATINUM	GOLD	MERCURY	THALLIUM	LEAD	BISMUTH	POLONIUM	ASTATINE	RADON
Cs	Ba		Hf	Ta	W		Os	Ir	Pt	Au		Tl	Pb 207.2	Bi	Po	At	Rn
132.91 87	137.34 88	89-103	178.49 104	180.95 105	183.85 106	186.2 107	190.2 108	192.22 109	195.09 110	196.97 111	200.59	204.37	207.2	208.98	[210.0]	[210.0]	[222.0]
O / FRANCIUM	O O RADIUM	09-105	1 U4 RUTHERFORDI		1 UU SEABORGIUM	IU/ BOHRIUM	100 HASSIUM	109 MEITNERIUM	I I U DARMSTADTIUM	I I I ROENTGENIUM							
Fr	Ra		Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg							
[223.0]	[226.0]		[261]	[262]	[266]	[262]	[265]	[266]	[271]	[272]]						
ANTHANID	IANTHA		8 RUM P	59 raseodymium	60 NEODYMIUM	61 promethium	62 samarium	63 Europium	64 gadolini	UM TERBI			67	68 Erbium	69 THULIUM	70 ytterbium	71

	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	
LANTHANIDES	LANTHANUM	CERIUM	PRASEODYMIUM	NEODYMIUM	PROMETHIUM	SAMARIUM	EUROPIUM	GADOLINIUM	TERBIUM	DYSPROSIUM	HOLMIUM	ERBIUM	THULIUM	YTTERBIUM	LUTETIUM	
	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	
	138.91	140.12	140.91	144.24	[144.9]	150.4	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97	
ACTINIDES	89	90	91	92	93	94	95	96	97	98	99	100	101	102	103	
	ACTINIUM AC	THORIUM Th	PROTACTINIUM Pa	URANIUM U	NEPTUNIUM Np	PLUTONIUM Pu	AMERICIUM Am	CURIUM	BERKELLIUM BK	CALIFORNIUM Cf	EINSTEINIUM Es	FERMIUM	MENDELEVIUM Md	NOBELIUM NO	LAWRENCIUM Lr	
	[227.0]	232.04	[231.0]	238.03	[237.0]	[239.1]	[243.1]	[247.1]	[247.1]	[252.1]	[252.1]	[257.1]	[256.1]	[259.1]	[260.1]	

PERIODIC TABLE OF THE ELEMENTS